ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны два треугольника: ABC и A1B1C1. Известно, что AB = A1B1, AC = A1C1, ∠A = ∠A1. На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что AK = A1K1, LC = L1C1. Докажите, что KL = K1L1 и AL = A1L1. Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна? Вершина M правильного треугольника ABM со стороной a
расположена на стороне CD прямоугольника ABCD. В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны? Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a. Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB. Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.
Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой. В окружность вписан прямоугольник ABCD , сторона AB которого равна a . Из конца K диаметра KP , параллельного стороне AB , сторона BC видна под углом β . Найдите радиус окружности. В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2. Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001. В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE. |
Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 6702]
Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B , пересекает окружность меньшего радиуса в точке A, а большего радиуса – в точке C. Найдите BC, если AC = 3
В равнобедренном треугольнике ABC ∠B = arctg 8/15. Окружность радиуса 1, вписанная в угол C, касается стороны CB в точке M и отсекает от основания отрезок KE. Известно, что MB = 15/8. Найдите площадь треугольника KMB, если известно, что точки A, K, E, B следуют на основании AB в указанном порядке.
В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE.
На плоскости даны две окружности радиусов 4 и 3 с центрами в
точках O1 и O2 , касающиеся некоторой прямой в точках
M1 и M2 и лежащие по разные стороны от этой прямой.
Отношение отрезка O1O2 к отрезку M1M2 равно
Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α, биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.
Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке