Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

Вниз   Решение


В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство  akm = xk + ym.

ВверхВниз   Решение


Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.

ВверхВниз   Решение


На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.

ВверхВниз   Решение


На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на чёрный стол (причём в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)

ВверхВниз   Решение


Докажите, что:
  a) против большей стороны треугольника лежит больший угол;
  б) против большего угла треугольника лежит большая сторона.

ВверхВниз   Решение


Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.

ВверхВниз   Решение


Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному.

ВверхВниз   Решение


12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты A, B, C, что A выиграл у B, B у C, C у A. (В теннисе ничьих не бывает.)

ВверхВниз   Решение


Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

Вверх   Решение

Задачи

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 7526]      



Задача 54043

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Прямая, проведённая через вершину C треугольника ABC параллельно его биссектрисе BD, пересекает продолжение стороны AB в точке M.
Найдите углы треугольника MBC, если  ∠ABC = 110°.

Прислать комментарий     Решение

Задача 54058

Темы:   [ Биссектриса угла (ГМТ) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 54059

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

Прислать комментарий     Решение

Задача 54074

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Точка Нагеля. Прямая Нагеля ]
Сложность: 3-
Классы: 8,9

Высота параллелограмма, проведённая из вершины тупого угла, равна 2 и делит сторону параллелограмма пополам. Острый угол параллелограмма равен 30°. Найдите диагональ, проведённую из вершины тупого угла, и углы, которые она образует со сторонами.

Прислать комментарий     Решение

Задача 54088

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

Прислать комментарий     Решение

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .