Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

Вниз   Решение


В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство  akm = xk + ym.

ВверхВниз   Решение


Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.

ВверхВниз   Решение


На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.

ВверхВниз   Решение


На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на чёрный стол (причём в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)

ВверхВниз   Решение


Докажите, что:
  a) против большей стороны треугольника лежит больший угол;
  б) против большего угла треугольника лежит большая сторона.

ВверхВниз   Решение


Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.

ВверхВниз   Решение


Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному.

ВверхВниз   Решение


12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты A, B, C, что A выиграл у B, B у C, C у A. (В теннисе ничьих не бывает.)

ВверхВниз   Решение


Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

ВверхВниз   Решение


Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция.

ВверхВниз   Решение


Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна?

ВверхВниз   Решение


Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.

ВверхВниз   Решение


Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Вверх   Решение

Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 6702]      



Задача 54954

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Прислать комментарий     Решение

Задача 54979

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

Прислать комментарий     Решение

Задача 54998

Темы:   [ Признаки подобия ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

Основание треугольника равно 36. Прямая, параллельная основанию, делит площадь треугольника пополам.
Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.

Прислать комментарий     Решение

Задача 54999

Тема:   [ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как  2 : 1,  считая от вершины. В каком отношении она делит боковые стороны?

Прислать комментарий     Решение

Задача 55000

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Прислать комментарий     Решение

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .