Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы.

Вниз   Решение


Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

ВверхВниз   Решение


Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?

ВверхВниз   Решение


Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

ВверхВниз   Решение


Правильный треугольник, одна сторона которого отмечена, отражается симметрично относительно одной из своих сторон. Полученный треугольник в свою очередь отражается и т.д., пока на некотором шаге треугольник не придёт в первоначальное положение. Доказать, что при этом отмеченная сторона также займёт исходное положение.

ВверхВниз   Решение


Существует ли такое натуральное n, что  n² + n + 1  делится на 1955?

ВверхВниз   Решение


Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
  а) При  n = 9  найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
  б) Доказать, что при  n = 10  такой нумерации осуществить нельзя.

ВверхВниз   Решение


Даны n карточек; на обеих сторонах каждой карточки написано по одному из чисел 1, 2,..., n, причём так, что каждое число встречается на всех n карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа: 1, 2,..., n.

ВверхВниз   Решение


Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Числа [a], [2a], ..., [Na] различны между собой, и числа $ \left[\vphantom{\frac{1}{a}}\right.$$ {\frac{1}{a}}$$ \left.\vphantom{\frac{1}{a}}\right]$, $ \left[\vphantom{\frac{2}{a}}\right.$$ {\frac{2}{a}}$$ \left.\vphantom{\frac{2}{a}}\right]$, ..., $ \left[\vphantom{\frac{M}{a}}\right.$$ {\frac{M}{a}}$$ \left.\vphantom{\frac{M}{a}}\right]$ тоже различны между собой. Найти все такие a.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

ВверхВниз   Решение


В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

ВверхВниз   Решение


На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.

ВверхВниз   Решение


Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°.
Докажите, что в действительности все соответственные углы равны.

ВверхВниз   Решение


Дан прямоугольный треугольник ABC. Из вершины B прямого угла проведена медиана BD. Пусть K – точка касания стороны AD треугольника ABD с вписанной окружностью этого треугольника. Найти острые углы треугольника ABC, если K делит AD пополам.

ВверхВниз   Решение


Дана система уравнений:
   
Какие значения может принимать x25?

ВверхВниз   Решение


Трёхчлен  ax² + bx + c  при всех целых x является точной четвёртой степенью. Доказать, что тогда  a = b = 0.

ВверхВниз   Решение


В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.
Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

ВверхВниз   Решение


Дана прямая l, перпендикулярная отрезку AB и пересекающая его. Для любой точки M прямой l строится такая точка N, что $ \angle$NAB = 2$ \angle$MAB; $ \angle$NBA = 2$ \angle$MBA. Доказать, что абсолютная величина разности AN - BN не зависит от выбора точки M на прямой l.

ВверхВниз   Решение


Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению

an+2=pan+1+qan (n=0,1,2,...) (11.2)

называется линейной рекуррентной (возвратной) последовательностью второго порядка.
Уравнение
x 2-px-q=0 (11.3)

называется характеристическим уравнением последовательности (a n).
Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.

ВверхВниз   Решение


Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

ВверхВниз   Решение


Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный.

ВверхВниз   Решение


На кафтане площадью 1 размещены 5 заплат, площадь каждой из которых не меньше 1/2. Докажите, что найдутся две заплаты, площадь общей части которых не меньше 1/5.

ВверхВниз   Решение


Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

ВверхВниз   Решение


На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 56501

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Прислать комментарий     Решение

Задача 56496

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

Прислать комментарий     Решение

Задача 56497

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Через вершину A квадрата ABCD проведены прямые l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые. Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны.

Прислать комментарий     Решение

Задача 56502

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

Прислать комментарий     Решение

Задача 56504

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .