Страница: 1
2 >> [Всего задач: 8]
Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
а) касательная в точке A к описанной окружности параллельна прямой B1C1;
б) B1C1 ⊥ OA, где O – центр описанной окружности.
Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на
стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны.
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. Докажите, что если A1B1 || AB и B1C1 || BC, то A1C1 || AC.
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1.
Докажите, что точка, симметричная A1 относительно прямой AC, лежит на прямой B1C1.
Страница: 1
2 >> [Всего задач: 8]