ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета? Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну? В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9. Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы? Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых. В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС. Дан треугольник ABC. Пусть O — точка пересечения
его медиан, а M, N и P — точки сторон AB, BC и CA,
делящие эти стороны в одинаковых отношениях (т. е.
AM : MB = BN : NC = CP : PA = p : q). Докажите, что:
Как связаны между собой десятичные представления чисел
Подряд выписаны n чисел, среди которых есть положительные и отрицательные. Подчеркивается каждое положительное число, а также каждое число, сумма которого с несколькими непосредственно следующими за ним числами положительна. Докажите, что сумма всех подчеркнутых чисел положительна. Разделить a128 – b128 на (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).
В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.
Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию? В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975? ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Из вершин A и B опущены перпендикуляры на CD,
пересекающие прямые BD и AC в точках K и L соответственно.
Докажите, что AKLB — ромб.
|
Страница: 1 2 >> [Всего задач: 9]
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что ломаная AOC делит ABCD на две
фигуры равной площади.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей.
Известен радиус описанной окружности R.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. P - точка пересечения диагоналей.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Из вершин A и B опущены перпендикуляры на CD,
пересекающие прямые BD и AC в точках K и L соответственно.
Докажите, что AKLB — ромб.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что площадь четырехугольника ABCD
равна
(AB . CD + BC . AD)/2.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке