ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 56672

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.
Прислать комментарий     Решение


Задача 56673

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.
Прислать комментарий     Решение


Задача 56674

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Три окружности S1, S2 и S3 попарно касаются друг друга в трех различных точках. Докажите, что прямые, соединяющие точку касания окружностей S1 и S2 с двумя другими точками касания, пересекают окружность S3 в точках, являющихся концами ее диаметра.
Прислать комментарий     Решение


Задача 56675

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Две касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O. Найдите периметр треугольника OO1O2.
Прислать комментарий     Решение


Задача 56676

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .