ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырехугольник ABCD вписан в окружность радиуса R$ \varphi$ — угол между его диагоналями. Докажите, что площадь S четырехугольника ABCD равна  2R2sin A sin B sin$ \varphi$.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 56793

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9

Диагонали четырехугольника ABCD пересекаются в точке P. Расстояния от точек A, B и P до прямой CD равны a, b и p. Докажите, что площадь четырехугольника ABCD равна  ab . CD/2p.
Прислать комментарий     Решение


Задача 56794

Тема:   [ Площадь четырехугольника ]
Сложность: 4
Классы: 9

Четырехугольник ABCD вписан в окружность радиуса R$ \varphi$ — угол между его диагоналями. Докажите, что площадь S четырехугольника ABCD равна  2R2sin A sin B sin$ \varphi$.
Прислать комментарий     Решение


Задача 56795

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Докажите, что площадь четырехугольника, диагонали которого не перпендикулярны, равна  tg$ \varphi$ . | a2 + c2 - b2 - d2|/4, где a, b, c и d — длины последовательных сторон, $ \varphi$ — угол между диагоналями.
Прислать комментарий     Решение


Задача 56796

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле

S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),

где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то  S2 = (p - a)(p - b)(p - c)(p - d ).
в) Докажите, что если четырехугольник ABCD описанный, то  S2 = abcd sin2((B + D)/2).
Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .