Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

Вниз   Решение


Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1. Пусть P1 — произвольная точка прямой BC, P2 — точка пересечения прямых P1B1 и AB, P3 — точка пересечения прямых P2A1 и CA, P4 — точка пересечения P3C1 и BC и т. д. Докажите, что точки P7 и P1 совпадают.

ВверхВниз   Решение


Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?

ВверхВниз   Решение


Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

ВверхВниз   Решение


Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

ВверхВниз   Решение


а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 176]      



Задача 56871  (#05.036)

Тема:   [ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9

Длины сторон треугольника — последовательные целые числа. Найдите эти числа, если известно, что одна из медиан перпендикулярна одной из биссектрис.
Прислать комментарий     Решение


Задача 56872  (#05.037)

Тема:   [ Целочисленные треугольники ]
Сложность: 4
Классы: 8,9

Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



Прислать комментарий     Решение

Задача 56873  (#05.038)

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Радиус вписанной окружности треугольника равен 1, а длины его сторон — целые числа. Докажите, что эти числа равны 3, 4, 5.
Прислать комментарий     Решение


Задача 56874  (#05.039)

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Приведите пример вписанного четырехугольника с попарно различными целочисленными длинами сторон, у которого длины диагоналей, площадь и радиус описанной окружности — целые числа (Брахмагупта).
Прислать комментарий     Решение


Задача 56875  (#05.040)

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .