ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1 соответственно. Докажите, что точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 176]
Окружность S1 вписана в угол A треугольника ABC; окружность S2 вписана в угол B и касается S1 (внешним образом); окружность S3 вписана в угол C и касается S2; окружность S4 вписана в угол A и касается S3 и т. д. Докажите, что окружность S7 совпадает с S1.
Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3
б) В треугольнике ABC проведены биссектрисы AA1 и BB1 и биссектриса внешнего угла CC1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 176] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|