ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 176]      



Задача 56906  (#05.069B)

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что

$\displaystyle {\frac{AB}{BC_1}}$ . $\displaystyle {\frac{C_1A_1}{B_1A_1}}$ . $\displaystyle {\frac{A_1B}{BC}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


Прислать комментарий     Решение

Задача 56907  (#05.064)

 [Теорема Дезарга]
Темы:   [ Теоремы Чевы и Менелая ]
[ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 9,10,11

Прямые  AA1, BB1, CC1 пересекаются в одной точке O. Докажите, что точки пересечения прямых AB и A1B1BC и B1C1AC и A1C1 лежат на одной прямой (Дезарг).
Прислать комментарий     Решение


Задача 56908  (#05.065)

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).
Прислать комментарий     Решение


Задача 56909  (#05.066)

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.
Прислать комментарий     Решение


Задача 56910  (#05.067)

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Через точку P проведена прямая, пересекающая стороны BC и AD в точках E и F. Докажите, что точки пересечения диагоналей четырехугольников  ABCD, ABEF и CDFE лежат на прямой, проходящей через точку Q.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .