ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111. Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию? Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000. При каких целых n число n4 + 4 – составное? Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны? x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx. Докажите неравенство для натуральных n: Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню.
Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
|
Страница: << 1 2 3 4 >> [Всего задач: 16]
Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
Из вершин выпуклого четырехугольника опущены
перпендикуляры на диагонали. Докажите, что четырехугольник,
образованный основаниями перпендикуляров, подобен исходному
четырехугольнику.
О выпуклом четырехугольнике ABCD известно, что
радиусы окружностей, вписанных в треугольники
ABC, BCD, CDA
и DAB, равны между собой. Докажите, что ABCD — прямоугольник.
Дан выпуклый четырехугольник ABCD;
A1, B1, C1
и D1 — центры описанных окружностей треугольников
BCD, CDA, DAB
и ABC. Аналогично для четырехугольника
A1B1C1D1 определяются
точки
A2, B2, C2 и D2. Докажите, что четырехугольники ABCD
и
A2B2C2D2 подобны, причем коэффициент их подобия равен
|(ctgA + ctgC)(ctgB + ctgD)/4|.
Окружности, диаметрами которых служат стороны AB
и CD выпуклого четырехугольника ABCD, касаются сторон CD и AB
соответственно. Докажите, что BC| AD.
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке