ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый четырехугольник разделен диагоналями на четыре треугольника. Докажите, что прямая, соединяющая точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, соединяющей точки пересечения высот двух других треугольников.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 110]      



Задача 57035  (#06.024)

Темы:   [ Подобные фигуры ]
[ Четырехугольники (прочее) ]
[ Преобразования подобия (прочее) ]
[ Против большей стороны лежит больший угол ]
Сложность: 5-
Классы: 9,10,11

Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями.
Прислать комментарий     Решение


Задача 57036  (#06.025)

Темы:   [ Подобные фигуры ]
[ Четырехугольники (прочее) ]
[ Преобразования подобия (прочее) ]
Сложность: 5+
Классы: 9,10

Четырехугольник ABCD выпуклый; точки  A1, B1, C1 и D1 таковы, что  AB||C1D1, AC||B1D1 и т. д. для всех пар вершин. Докажите, что четырехугольник  A1B1C1D1 тоже выпуклый, причем  $ \angle$A + $ \angle$C1 = 180o.
Прислать комментарий     Решение


Задача 57037  (#06.026)

Темы:   [ Гомотетия помогает решить задачу ]
[ Подобные фигуры ]
[ Симметрия помогает решить задачу ]
[ Четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10

Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.
Прислать комментарий     Решение


Задача 57038  (#06.027)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Выпуклый четырехугольник разделен диагоналями на четыре треугольника. Докажите, что прямая, соединяющая точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, соединяющей точки пересечения высот двух других треугольников.
Прислать комментарий     Решение


Задача 57039  (#06.028)

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Диагонали описанной трапеции ABCD с основаниями AD и BC пересекаются в точке O. Радиусы вписанных окружностей треугольников  AOD, AOB, BOC и COD равны  r1, r2, r3 и r4 соответственно. Докажите, что $ {\frac{1}{r_1}}$ + $ {\frac{1}{r_3}}$ = $ {\frac{1}{r_2}}$ + $ {\frac{1}{r_4}}$.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .