ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек. Вычислите суммы: а) 1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1); б) a sin φ + ... + ak sin kφ + ... ( |a| < 1); в) г) а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым? Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в
записи которых каждая из этих цифр встречается ровно один раз. Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков? Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр. Окружности
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]
Окружности
В равностороннем (неправильном) пятиугольнике ABCDE
угол ABC вдвое больше угла DBE. Найдите величину угла ABC.
а) Диагонали AC и BE правильного
пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная
окружность треугольника CKE касается прямой BC.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.
Правильный пятиугольник ABCDE со стороной a вписан в
окружность S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности S,
равна c. Докажите, что
a2 + b2 = c2.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 110]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке