ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Количество перестановок множества из n элементов обозначается Pn. Докажите равенство  Pn = n!.

Вниз   Решение


Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

ВверхВниз   Решение


Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.

ВверхВниз   Решение


Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

ВверхВниз   Решение


Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 103]      



Задача 57324  (#09.020)

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Средние величины ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Прислать комментарий     Решение

Задача 57325  (#09.021)

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.
Прислать комментарий     Решение


Задача 57326  (#09.022)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 6,7,8

В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом.
Прислать комментарий     Решение


Задача 55228  (#09.023)

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5
Классы: 8,9

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.

Прислать комментарий     Решение


Задача 57328  (#09.024)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Докажите, что если длины сторон треугольника связаны неравенством  a2 + b2 > 5c2, то c — длина наименьшей стороны.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 103]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .