Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

а) Пусть AA' и BB' — сопряженные диаметры эллипса с центром O. Проведем через точку B перпендикуляр к прямой OA и отложим на нем отрезки BP и BQ, равные OA. Докажите, что главные оси эллипса являются биссектрисами углов между прямыми OP и OQ.
б) На плоскости нарисована пара сопряженных диаметров эллипса. С помощью циркуля и линейки постройте его оси.

Вниз   Решение


Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

ВверхВниз   Решение


Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.

ВверхВниз   Решение


Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1  м2?

ВверхВниз   Решение


Докажите, что  la $ \leq$ $ \sqrt{p(p-a)}$.

ВверхВниз   Решение


В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.

ВверхВниз   Решение


С помощью одного циркуля постройте окружность, проходящую через три данные точки.

ВверхВниз   Решение


Точки K и M — середины сторон AB и CD выпуклого четырехугольника ABCD, точки L и N расположены на сторонах BC и AD так, что KLMN — прямоугольник. Докажите, что площадь четырехугольника ABCD вдвое больше площади прямоугольника KLMN.

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]      



Задача 57439  (#10.029)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что  27Rr $ \leq$ 2p2 $ \leq$ 27R2/2.
Прислать комментарий     Решение


Задача 57440  (#10.030)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Пусть O — центр вписанной окружности треугольника ABC, причем  OA $ \geq$ OB $ \geq$ OC. Докажите, что OA $ \geq$ 2r и  OB $ \geq$ r$ \sqrt{2}$.
Прислать комментарий     Решение


Задача 57441  (#10.031)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6r.
Прислать комментарий     Решение


Задача 57442  (#10.032)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5
Классы: 8,9

Докажите, что 3$ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$ $ \geq$ 4$ \left(\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right.$$ {\frac{r_a}{a}}$ + $ {\frac{r_b}{b}}$ + $ {\frac{r_c}{c}}$$ \left.\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right)$.
Прислать комментарий     Решение


Задача 57443  (#10.033)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 6
Классы: 8,9

Докажите, что
а)  5R - r $ \geq$ $ \sqrt{3}$p;
б)  4R - ra $ \geq$ (p - a)[$ \sqrt{3}$ + (a2 + (b - c)2)/(2S)].
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .