|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 1 час 30 минут, баржа отправилась назад и вернулась в пункт А в 22:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 60 км/ч. Ответ дайте в км/ч. Найдите наименьшее значение функции y = 7x-ln (x+2)7 на отрезке [-1,5;0] . Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM. |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|