ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

Вниз   Решение


У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?

ВверхВниз   Решение


Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?

ВверхВниз   Решение


Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$

ВверхВниз   Решение


Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57914  (#18.000.1)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при повороте окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57915  (#18.000.2)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.
Прислать комментарий     Решение


Задача 57916  (#18.000.3)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.
Прислать комментарий     Решение


Задача 57917  (#18.000.4)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
Прислать комментарий     Решение


Задача 57918  (#18.000.5)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .