ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку. а)
1 < cos Окружности
S1, S2,..., Sn касаются двух окружностей R1
и R2 и, кроме того, S1 касается S2 в точке A1, S2
касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки
A1, A2,..., An - 1
лежат на одной окружности.
Отрезок MN, параллельный стороне CD
четырехугольника ABCD, делит его площадь пополам (точки M
и N лежат на сторонах BC и AD). Длины отрезков,
проведенных из точек A и B параллельно CD до пересечения
с прямыми BC и AD, равны a и b. Докажите,
что
MN2 = (ab + c2)/2, где c = CD.
Плоскость раскрашена в семь цветов. Обязательно
ли найдутся две точки одного цвета, расстояние между
которыми равно 1?
Даны три прямые a, b, c. Докажите, что композиция симметрий
ScoSboSa является симметрией относительно некоторой прямой тогда
и только тогда, когда данные прямые пересекаются в одной точке.
x² ≡ y² (mod 239). Доказать, что x ≡ y или x ≡ – y.
Докажите тождество:
13 + 23 +...+ n3 = (1 + 2 +...+ n)2.
Может ли m! + n! оканчиваться на 1990? Пусть на двух пересекающихся прямых l1 и l2
выбраны точки M1 и M2, не совпадающие с точкой
пересечения M этих прямых. Поставим в соответствие им
окружность, проходящую через M1, M2 и M.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
В этой задаче мы будем рассматривать наборы
из n прямых общего положения, т. е. наборы, в которых
никакие две прямые не параллельны и никакие три не
проходят через одну точку.
Пусть на двух пересекающихся прямых l1 и l2
выбраны точки M1 и M2, не совпадающие с точкой
пересечения M этих прямых. Поставим в соответствие им
окружность, проходящую через M1, M2 и M.
Окружности
S1, S2,..., Sn касаются двух окружностей R1
и R2 и, кроме того, S1 касается S2 в точке A1, S2
касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки
A1, A2,..., An - 1
лежат на одной окружности.
Докажите, что если существует цепочка окружностей S1, S2,..., Sn, каждая из которых касается двух соседних (Sn касается Sn - 1 и S1) и двух данных непересекающихся окружностей R1 и R2, то таких цепочек бесконечно много. А именно, для любой окружности T1, касающейся R1 и R2 (одинаковым образом, если R1 и R2 не лежат одна в другой, внешним и внутренним образом в противном случае), существует аналогичная цепочка из n касающихся окружностей T1, T2,..., Tn (поризм Штейнера).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке