Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Вниз   Решение


Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


ВверхВниз   Решение


В треугольнике ABC  ∠A = 45°,  BH – высота, точка K лежит на стороне AC, причём  BC = CK.
Докажите, что центр описанной окружности треугольника ABK совпадает с центром вневписанной окружности треугольника BCH.

ВверхВниз   Решение


Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

ВверхВниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

ВверхВниз   Решение


Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

ВверхВниз   Решение


Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]      



Задача 58385  (#29.020)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

Прислать комментарий     Решение


Задача 58386  (#29.021)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то

(b - a)/(c - a) = (b' - a')/(c' - a').


Прислать комментарий     Решение

Задача 58387  (#29.022)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


Прислать комментарий     Решение

Задача 58388  (#29.022.1)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a и b — комплексные числа, лежащие на окружности с центром в нуле, u — точка пересечения касательных к этой окружности в точках a и b. Докажите, что u = 2ab/(a + b).
Прислать комментарий     Решение


Задача 58389  (#29.023)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a — комплексное число, лежащее на единичной окружности S с центром в нуле, t — вещественное число (точка, лежащая на вещественной оси). Пусть, далее, b — отличная от a точка пересечения прямой at с окружностью S. Докажите, что $ \bar{b}$ = (1 - ta)(t - a).
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .