ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г. а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна
(n - 2) . 180o.
Докажите, что окружность при осевой симметрии переходит в окружность.
Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный. В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. Дан треугольник ABC. Построены четыре окружности равного радиуса На плоскости расположено n Разрежьте произвольный треугольник на 3 части и сложите из них
прямоугольник.
Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC
&8212; точка L, на стороне CD — точка M и на стороне AD — точка N,
так, что KB = BL = a, MD = DN = b. Пусть
KL Докажите, что если фигура имеет две перпендикулярные
оси симметрии, то она имеет центр симметрии.
На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует). а) Даны прямые a, b, c, d, проходящие через одну
точку, и прямая l, через эту точку не проходящая. Пусть A,
B, C, D — точки пересечения прямой l с прямыми a, b,
c, d соответственно. Докажите, что
(abcd )= (ABCD).
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]
Докажите, что существует проективное отображение,
которое три данные точки одной прямой переводит в три
данные точки другой прямой.
а) Даны прямые a, b, c, d, проходящие через одну
точку, и прямая l, через эту точку не проходящая. Пусть A,
B, C, D — точки пересечения прямой l с прямыми a, b,
c, d соответственно. Докажите, что
(abcd )= (ABCD).
Докажите, что если
(ABCX) = (ABCY), то X = Y (все
точки попарно различны, кроме, быть может, точек X и Y,
и лежат на одной прямой).
Докажите, что проективное преобразование прямой
однозначно определяется образами трех произвольных точек.
Докажите, что нетождественное проективное преобразование прямой
имеет не более двух неподвижных точек.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке