ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса. Докажите, что если многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n, то он принимает целые значения во всех целых точках. Даны точки A(2;-1;0) , B(3;2;1) , C(1;2;2) и D(-3;0;4) . Найдите расстояние между прямыми AB и CD . Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500. В выпуклом четырёхугольнике KLMN диагонали LN и KM равны стороне KL . Найдите угол LMN и сторону KL , если угол MNK – прямой, LM=3 , KN=4 . Та же задача, но требуется, чтобы сначала шли элементы,
меньшие b, затем равные b, а лишь затем
большие b.
Подойдя к незнакомому одноподъездному дому и думая, что на каждом этаже по шесть квартир, Аня решила, что нужная ей квартира находится на четвёртом этаже. Поднявшись на четвёртый этаж, Аня обнаружила, что нужная ей квартира действительно находится там, несмотря на то, что на каждом этаже – по семь квартир. Каким мог быть номер квартиры, в которую шла Аня? Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов? Круг вписан в круговой сектор с углом 2α . Найдите отношение площади сектора к площади круга. Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав? В выпуклом пятиугольнике ABCDE AE = AD, AC = AB и ∠DAC = ∠AEB + ∠ABE. Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]
Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|.
Позиционная система
счисления.
Докажите, что
при
q
n = akqk + ak - 1qk - 1 +...+ a1q + a0,
где
0
Пусть a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T an+T = an (n ≥ 0). Докажите, что
Аксиома индукции. Если известно, что некоторое утверждение верно для 1,
и из предположения, что утверждение верно для некоторого n, вытекает его
справедливость для n+1, то это утверждение верно для всех натуральных чисел.
Число x таково, что число
x +
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке