ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

Вниз   Решение


Пусть     Чему равны Pn и Qn?

ВверхВниз   Решение


В коридоре длиной 100 метров постелено 20 ковровых дорожек общей длины 1000 метров. Каково может быть наибольшее число незастеленных кусков (ширина дорожки равна ширине коридора)?

ВверхВниз   Решение


Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q

ВверхВниз   Решение


Число x таково, что число x + $ {\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном n число xn + $ {\frac{1}{x^n}}$ также является целым.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]      



Задача 60274  (#01.001)

 [Деление с остатком]
Тема:   [ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8,9

Докажите, что если a и b – целые числа и  b ≠ 0,  то существует единственная пара чисел q и r, для которой  a = bq + r,  0 ≤ r < |b|.

Прислать комментарий     Решение

Задача 60275  (#01.002)

Тема:   [ Системы счисления (прочее) ]
Сложность: 2+
Классы: 8,9,10

Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q
Прислать комментарий     Решение

Задача 60276  (#01.003)

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
Сложность: 3
Классы: 9,10

Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

Прислать комментарий     Решение

Задача 60277  (#01.004)

Тема:   [ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10

Аксиома индукции. Если известно, что некоторое утверждение верно для 1, и из предположения, что утверждение верно для некоторого n, вытекает его справедливость для n+1, то это утверждение верно для всех натуральных чисел.
Докажите, что аксиома индукции равносильна любому из следующих утверждений:
1) всякое непустое подмножество натуральных чисел содержит наименьшее число;
2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число;
3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа;
4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a $ \leqslant$ k < n вытекает его справедливость для n, то это утверждение верно для всех натуральных чисел k $ \geqslant$ a;
5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел.

Прислать комментарий     Решение

Задача 60278  (#01.005)

Темы:   [ Индукция (прочее) ]
[ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Число x таково, что число x + $ {\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном n число xn + $ {\frac{1}{x^n}}$ также является целым.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .