ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими. Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и 2∠MAC = ∠MCA. Найдите сторону BC. Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.) Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N . Докажите, что а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA . В спортклубе тренируются 100 толстяков весом от 1 до 100 кг. На какое наименьшее число команд их можно разделить так, чтобы ни в одной команде не было двух толстяков, один из которых весит вдвое больше другого?
Точка M находится на расстояниях 5 и 4 от двух параллельных прямых m и n и на расстоянии 3 от плоскости, проходящей через эти прямые. Найдите расстояние между прямыми m и n . Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него. Имеется две кучки по 11 спичек. За ход можно взять две спички из одной кучки и одну из другой. Проигрывает тот, кто не может сделать ход.
Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.
Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел. Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел? а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход. б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.
|
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.
В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.
Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.
В вершинах выпуклого n-угольника расставлены m фишек (m > n). За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.
Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке