Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.

Вниз   Решение


Докажите равенства
а) $ \sqrt[4]{\dfrac{7+3\sqrt5}{2}}$ - $ \sqrt[4]{\dfrac{7-3\sqrt5}{2}}$ = 1;
б) $ \sqrt[5]{\dfrac{11+5\sqrt5}{2}}$ + $ \sqrt[9]{\dfrac{76-34\sqrt5}{2}}$ = 1.
Найдите общую формулу, для которой данные равенства являются частными случаями.

ВверхВниз   Решение


Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.

ВверхВниз   Решение


План города имеет схему, изображенную на рисунке.

На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.

ВверхВниз   Решение


Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

ВверхВниз   Решение


Сколькими способами можно выбрать из полной колоды (52 карты) 10 карт так, чтобы
  а) среди них был ровно один туз?
  б) среди них был хотя бы один туз?

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


Человек имеет шесть друзей и в течение пяти дней приглашает к себе в гости каких-то троих из них так, чтобы компания ни разу не повторялась.
Сколькими способами он может это сделать?

ВверхВниз   Решение


В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт.
Докажите, что и теперь от каждого города можно добраться до любого другого.

ВверхВниз   Решение


Вычислите сумму:  

ВверхВниз   Решение


Рассмотрим множество последовательностей длины n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих рядом. Докажите, что количество таких последовательностей равно Fn + 2. Найдите взаимно-однозначное соответствие между такими последовательностями и маршрутами кузнечика из задачи 3.109.

ВверхВниз   Решение


Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.

ВверхВниз   Решение


Сколько существует десятизначных чисел, сумма цифр которых равна   а) 2;   б) 3;   в) 4?

ВверхВниз   Решение


Решите в целых числах уравнение   xφn+1 + yφn.
Число φ определено в задаче 60578.

ВверхВниз   Решение


Имеется группа островов, соединённых мостами так, что от каждого острова можно добраться до любого другого. Турист обошёл все острова, пройдя по каждому мосту ровно один раз. На острове Троекратном он побывал трижды. Сколько мостов ведёт с Троекратного, если турист
  а) не с него начал и не на нём закончил?
  б) с него начал, но не на нём закончил?
  в) с него начал и на нём закончил?

ВверхВниз   Решение


Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 60590  (#03.138)

Темы:   [ Алгоритм Евклида ]
[ Десятичная система счисления ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 9,10,11

а) Докажите, что в последовательности чисел Фибоначчи при  m ≥ 2  встречается не менее четырёх и не более пяти m-значных чисел.
б) Докажите, что число F5n+2  (n ≥ 0)  содержит в своей десятичной записи не менее  n + 1  цифры.

Прислать комментарий     Решение

Задача 60591  (#03.139)

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

Прислать комментарий     Решение

Задача 60592  (#03.140)

 [Теорема Ламе]
Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

Прислать комментарий     Решение

Задача 60593  (#03.141)

 [Фибоначчиевы коэффициенты]
Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

Прислать комментарий     Решение

Задача 60594  (#03.142)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 9,10,11

Пусть a1, a2, ... – такая последовательность ненулевых чисел, что  (am, an) = a(m, n)  (m, n ≥ 1).

Докажите, что все обобщенные биномиальные коэффициенты     являются целыми числами.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .