ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти наименьшее натуральное N, дающее остаток 1 по модулю 2, 2 по модулю 3, ..., 7 по модулю 8. Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер. Постройте радикальную ось двух непересекающихся окружностей S1 и S2.
Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника? Существует ли ломаная, пересекающая все рёбра картинки по одному разу? Доказать, что в двудольном плоском графе E ≥ 2F, если E ≥ 2 (E – число рёбер, F – число областей). Найдите наибольшее из чисел 5100, 691, 790, 885. Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. Существует ли такое натуральное x, что x² + x + 1 делится на 1985? На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6? Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке F, а продолжения сторон BC
и AD — в точке E. Докажите, что окружности с диаметрами AC, BD
и EF имеют общую радикальную ось, причем на
ней лежат ортоцентры треугольников
ABE, CDE, ADF и BCF.
На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине? На сторонах треугольника ABC внешним образом
построены квадраты с центрами P, Q и R. На сторонах
треугольника PQR внутренним образом построены квадраты.
Докажите, что их центры являются серединами сторон
треугольника ABC.
У юного художника была одна банка синей и одна банка жёлтой краски, каждой из которых хватает на покраску 38 дм2 площади. Использовав всю эту краску, он нарисовал картину: синее небо, зелёную траву и жёлтое солнце. Зелёный цвет он получал, смешивая две части жёлтой краски и одну часть синей. Какая площадь на его картине закрашена каждым цветом, если площадь травы на картине на 6 дм2 больше, чем площадь неба? Через вершину A квадрата ABCD проведены прямые l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые. Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны. При каких p и q двучлен x4 + 1 делится на x² + px + q? |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 141]
Один из корней уравнения x³ – 6x² + ax – 6 = 0 равен 3. Решите уравнение.
При каких значениях параметра a многочлен P(x) = xn + axn–2 (n ≥ 2) делится на x – 2 ?
При каких p и q двучлен x4 + 1 делится на x² + px + q?
При каких a многочлен P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ делится на x – 1?
Найти все многочлены P(x), для которых справедливо тождество: xP(x – 1) ≡ (x – 26)P(x).
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 141]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке