|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На какие натуральные числа можно сократить дробь Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера? Постройте окружность, касающуюся трех данных окружностей (задача Аполлония). Докажите, что многочлен a³(b² – c²) + b³(c² – a²) + c³(a² – b²) делится на (b – c)(c – a)(a – b). |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Докажите, что многочлен a³(b² – c²) + b³(c² – a²) + c³(a² – b²) делится на (b – c)(c – a)(a – b).
Докажите, что из равенства P(x) = Q(x)T(x) + R(x) следует соотношение (P(x), Q(x)) = (Q(x), R(x)).
Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором s ≥ 1 существуют такие многочлены A0(x), A1(x), ..., As(x) и R1(x), ..., Rs(x), что degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|