ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что ∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2. а) На сторонах BC, CA и AB треугольника ABC
(или на их продолжениях) взяты точки A1, B1 и C1, отличные
от вершин треугольника. Докажите, что описанные окружности
треугольников
AB1C1, A1BC1 и A1B1C пересекаются
в одной точке.
Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других. Даны диаметр AB окружности и точка C, не лежащая
на прямой AB. С помощью одной линейки (без циркуля)
опустите перпендикуляр из точки C на AB, если:
а) точка C не лежит на окружности;
б) точка C лежит на окружности.
На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны. Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой. Докажите, что
cos
На сторонах произвольного остроугольного
треугольника ABC как на диаметрах построены окружности.
При этом образуется три к внешнихк криволинейных треугольника
и один к внутреннийк (рис.). Докажите, что если из
суммы площадей к внешнихк треугольников вычесть площадь
к внутреннегок треугольника, то получится удвоенная площадь
треугольника ABC.
Предположим, что имеется набор функций f1(x), ..., fn(x), определённых на отрезке [a, b]. Докажите неравенство: Докажите неравенство: |
Страница: 1 2 >> [Всего задач: 6]
Предположим, что имеется набор функций f1(x), ..., fn(x), определённых на отрезке [a, b]. Докажите неравенство:
Докажите неравенство:
Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим:
Докажите неравенство:
Используя результат задачи 61403, докажите неравенства:
в)
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке