ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

Вниз   Решение


Назовём натуральное число интересным, если сумма его цифр – простое число.
Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65111  (#9.1)

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

Прислать комментарий     Решение

Задача 65119  (#10.1)

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

Прислать комментарий     Решение

Задача 65119  (#11.1)

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

Прислать комментарий     Решение

Задача 65112  (#9.2)

Темы:   [ Десятичная система счисления ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Назовём натуральное число интересным, если сумма его цифр – простое число.
Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

Прислать комментарий     Решение

Задача 65120  (#10.2)

Темы:   [ Правильные многоугольники ]
[ Комбинаторика (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

На плоскости отметили все вершины правильного n-угольника, а также его центр. Затем нарисовали контур этого n-угольника, и центр соединили со всеми вершинами; в итоге n-угольник разбился на n треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких n по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .