Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.

Вниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

ВверхВниз   Решение


Даны натуральные числа a и b, причём  a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?

ВверхВниз   Решение


Чётное число орехов разложено на три кучки. За одну операцию можно переложить половину орехов из кучки с чётным числом орехов в любую другую кучку. Докажите, что, как бы орехи ни были разложены изначально, такими операциями можно в какой-нибудь кучке собрать ровно половину всех орехов.

ВверхВниз   Решение


В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что  11nk ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.

ВверхВниз   Решение


В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая буква в словах ЭХ и МОРОЗ соответствует какой-то цифре, причём одинаковым цифрам соответствуют одинаковые буквы, а разным – разные.

Известно, что  Э·Х = M·О·Р·О·З,  а  Э + Х = М + О + Р + О + З.  Чему равно  Э·Х + M·О·Р·О·З?

ВверхВниз   Решение


Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности, треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

ВверхВниз   Решение


За круглым столом сидят 40 человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет?

ВверхВниз   Решение


Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.

ВверхВниз   Решение


Можно ли расставить натуральные числа от 1 до 10 в ряд так, чтобы каждое число было делителем суммы всех предыдущих?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

ВверхВниз   Решение


Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

ВверхВниз   Решение


Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

ВверхВниз   Решение


В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.

ВверхВниз   Решение


Автор: Шевяков В.

Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?

ВверхВниз   Решение


Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

ВверхВниз   Решение


Дан треугольник ABC. На стороне AB как на основании построен во внешнюю сторону равнобедренный треугольник ABC' с углом при вершине 120°, а на стороне AC построен во внутреннюю сторону правильный треугольник ACB'. Точка K – середина отрезка BB'. Найдите углы треугольника KCC'.

ВверхВниз   Решение


У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 65256  (#11.7)

Темы:   [ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Лемуана ]
Сложность: 4
Классы: 10,11

Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности, треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω.

Прислать комментарий     Решение

Задача 65241  (#9.8)

Темы:   [ Принцип крайнего (прочее) ]
[ Обыкновенные дроби ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Автор: Нилов Ф.

На доске написаны  N ≥ 9  различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно?
Прислать комментарий     Решение


Задача 65249  (#10.8)

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 9,10,11

У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

Прислать комментарий     Решение

Задача 65257  (#11.8)

Темы:   [ Целочисленные решетки (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

Даны натуральные числа a и b, причём  a < b < 2a. На клетчатой плоскости отмечены некоторые клетки так, что в каждом клетчатом прямоугольнике a×b или b×a есть хотя бы одна отмеченная клетка. При каком наибольшем α можно утверждать, что для любого натурального N найдётся клетчатый квадрат N×N, в котором отмечено хотя бы αN² клеток?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .