Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?

Вниз   Решение


Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

ВверхВниз   Решение


В стране 100 городов, между каждыми двумя городами осуществляется беспосадочный перелёт. Все рейсы платные и стоят положительное (возможно, нецелое) число тугриков. Для любой пары городов А и Б перелёт из А в Б стоит столько же, сколько перелёт из Б в А. Средняя стоимость перелёта равна 1 тугрику. Путешественник хочет облететь какие-нибудь m разных городов за m перелётов, начав и закончив в своём родном городе. Всегда ли ему удастся совершить такое путешествие, потратив на билеты не более m тугриков, если
  а)  m = 99;
  б)  m = 100?

ВверхВниз   Решение


На листе бумаги синим карандашом нарисовали треугольник, а затем провели в нём красным карандашом медиану, биссектрису и высоту (возможно, не все из разных вершин), лежащие внутри треугольника. Получили разбиение треугольника на части. Мог ли среди этих частей оказаться равносторонний треугольник с красными сторонами?

ВверхВниз   Решение


На отрезке  [a, b]  отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: a – синяя и b – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: a – красная и b – синяя?

ВверхВниз   Решение


Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 1991?

ВверхВниз   Решение


Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 65734

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что  AE ≠ CF  и
FMC = ∠MEF = α.  Найдите  ∠AEM.

Прислать комментарий     Решение

Задача 65455

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Трое играют в "камень-ножницы-бумагу". В каждом раунде каждый наугад показывает "камень", "ножницы" или "бумагу". "Камень" побеждает "ножницы", "ножницы" побеждают "бумагу", "бумага" побеждает "камень". Если в раунде было показано ровно два различных элемента (и значит, один из них показали дважды), то игроки (или игрок), показавшие победивший элемент, получают по 1 баллу; иначе баллы никому не начисляются. После нескольких раундов оказалось, что все элементы были показаны одинаковое количество раз. Докажите, что в этот момент сумма набранных всеми баллов делилась на 3.

Прислать комментарий     Решение

Задача 65456

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Против большей стороны лежит больший угол ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что  AK = BL = a,
KM = LM = b
  и угол KML прямой. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 65459

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

Прислать комментарий     Решение

Задача 65460

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .