ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение P(x) = a. Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть? Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек
A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной
точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1,
C1 на прямые BC, CA, AB тоже пересекаются в одной точке
(Штейнер).
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Решите неравенство:
Найдите все натуральные n > 1, для которых n³ – 3 делится на n – 1. Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость. а) Стороны угла с вершиной C касаются окружности
в точках A и B. Из точки P, лежащей на окружности,
опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA
и AB. Докажите, что
PC12 = PA1 . PB1 и
PA1 : PB1 = PB2 : PA2.
На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке? Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников ABC и OAOBOC. В прямоугольном параллелепипеде АВСDA'B'C'D' АВ = ВС = а, AA' = b. Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции. а) Точки P1 и P2 изогонально сопряжены относительно
треугольника ABC. Докажите, что их подерные окружности (описанные окружности подерных треугольников (см. задачу 5.99)) совпадают, причем
центром этой окружности является середина отрезка P1P2.
Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска? В очереди под дождём стояли 11 человек, каждый держал зонтик. Они стояли вплотную, то есть зонтики соседей соприкасались (см. рис).
Дождь закончился, люди закрыли зонтики и встали, соблюдая дистанцию в 50 см между соседями. Во сколько раз уменьшилась длина очереди? Людей можно считать точками, а зонтики — кругами радиуса 50 см. На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же. |
Страница: << 1 2 [Всего задач: 7]
Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение P(x) = a. Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?
На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.
Страница: << 1 2 [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке