|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Выпуклый $n$-угольник ($n$ > 4) обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных. На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.) В первой строке таблицы записаны подряд все числа от 1 до 9. Можно ли заполнить вторую строку этой таблицы теми же числами от 1 до 9 в каком-нибудь порядке так, чтобы сумма двух чисел в каждом столбце оказалась точным квадратом? Объем параллелепипеда ABCDA1B1C1D1 равен 9. Найдите объем треугольной пирамиды ABCA1 . Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня? Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным? |
Страница: 1 2 >> [Всего задач: 8]
В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?
Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?
Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?
Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?
Страница: 1 2 >> [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|