ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
M1, M2,..., M6 — середины сторон выпуклого
шестиугольника
A1A2...A6. Докажите, что существует
треугольник, стороны которого равны и параллельны отрезкам M1M2,
M3M4, M5M6.
Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$? На плоскости дано бесконечное множество прямоугольников, вершины
каждого из которых расположены в точках с координатами (0, 0), (0, m),
(n, 0), (n, m), где n и m — целые положительные числа
(свои для каждого прямоугольника). Докажите, что из этих прямоугольников
можно выбрать два так, чтобы один содержался в другом.
В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая хотя и поднималась вдвое медленнее первой, но зато спускалась
вдвое быстрее. На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b. |
Страница: 1 2 >> [Всего задач: 6]
На стороне AB треугольника ABC отмечена точка K так, что AB = CK. Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что KN = KP.
Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что BC || AD и AN = CM.
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b.
Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке