ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых. В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN.
На плоскости даны точки A1 , A2 , An и точки B1 ,
B2 , Bn . Докажите, что точки Bi можно
перенумеровать так, что для всех i Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что AB1 – AC1 = CA1 – CB1 = BC1 – BA1. Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC. 2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и
вынимать яблоки из корзин. Доказать, что 1·2·3 + 2·3·4 + ... + 98·99·100 ≠ 19891988. Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6.
|
Страница: << 1 2 3 >> [Всего задач: 12]
В Тридевятом царстве на каждом перекрёстке сходится ровно три дорожки. Было у царя три сына, старшие умные, а младший Иван – дурак. Послал старик сыновей за молодильными яблоками. Старший, выйдя из дворца, на первом перекрёстке свернул налево, на следующем направо, потом налево, снова направо – и дошёл до волшебной яблони. Средний на первом перекрёстке свернул направо, потом налево, снова направо, снова налево – и тоже дошёл до этой яблони. А Иван на всех перекрёстках поворачивал направо, три раза повернул да и пришёл обратно во дворец несолоно хлебавши. Нарисуйте пример, как может выглядеть схема дорожек в Тридевятом царстве, если известно, что и от царского дворца, и от яблони отходит ровно по одной дорожке.
Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6.
На стороне AB треугольника ABC отметили точку M так, что AM=BC. Из точек M и B на сторону AC опустили перпендикуляры MK и BH (см. рис.). AC вдвое больше KH. Угол A равен 22 градусам. Найдите угол C.
Карлсон ест варенье вдвое быстрее, чем Малыш, а торт он ест втрое быстрее, чем Малыш.
В лесном пункте обмена можно обменять
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке