Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На доске написаны числа 2, 3, 4, ..., 29, 30. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?

Вниз   Решение


В доме $8N$ этажей. В подъезде два лифта, в каждом из которых кнопки расположены в виде прямоугольника $N\times 8$ ($N$ строк, 8 столбцов), но пронумерованы по-разному: в одном «слева направо, снизу вверх», а в другом «снизу вверх, слева направо» (пример для $N=3$ см. на рисунке). Даня нажимает кнопку своего этажа, не глядя на нумерацию, потому что эта кнопка в обоих лифтах расположена на одном и том же месте. На каком этаже он может жить? (Например, для $N=3$ ответ 1 и 24. Требуется найти все возможные варианты в зависимости от $N$.)

17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
3 6 9 12 15 18 21 24
2 5 8 11 14 17 20 23
1 4 7 10 13 16 19 22

ВверхВниз   Решение


Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 77951

Темы:   [ Сфера, вписанная в трехгранный угол ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 11

В трёхгранный угол с вершиной S вписана сфера с центром в точке O.
Докажите, что плоскость, проходящая через три точки касания, перпендикулярна к прямой SO.

Прислать комментарий     Решение

Задача 77952

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Если при любом положительном p все корни уравнения  ax² + bx + c + p = 0  действительны и положительны, то коэффициент a равен нулю. Докажите.

Прислать комментарий     Решение

Задача 77955

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичные дроби ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).

Прислать комментарий     Решение

Задача 77956

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3+
Классы: 8,9

Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Прислать комментарий     Решение

Задача 77959

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 9,10

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .