Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.

Вниз   Решение


В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.

ВверхВниз   Решение


Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.

ВверхВниз   Решение


Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

ВверхВниз   Решение


Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.

ВверхВниз   Решение


Докажите, что можно найти более тысячи троек натуральных чисел a, b, c, для которых выполняется равенство a15 + b15 = c16.

ВверхВниз   Решение


Автор: Ионин Ю.И.

Пусть p – произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел  1 – x  и  1 + x  равна p.

ВверхВниз   Решение


  а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
  б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?

ВверхВниз   Решение


Автор: Рябов П.

Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$.

ВверхВниз   Решение


Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.

ВверхВниз   Решение


Докажите, что если  a, b, c, d, x, y, u, v  – вещественные числа и  abcd > 0,  то

(ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).

ВверхВниз   Решение


Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78174  (#1)

Тема:   [ Квадратные корни (прочее) ]
Сложность: 2+
Классы: 9,10

Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью 2 - $ \sqrt{2}$ и $ \sqrt{2}$, перелить из одной в другую ровно 1 литр?
Прислать комментарий     Решение


Задача 78175  (#2)

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8,9,10

Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?

Прислать комментарий     Решение

Задача 78176  (#3)

Тема:   [ Площадь четырехугольника ]
Сложность: 2+
Классы: 9,10

Дан выпуклый четырёхугольник ABCD. Середины сторон AB и CD обозначим соответственно через K и M, точку пересечения AM и DK — через O, точку пересечения BM и CK — через P. Доказать, что площадь четырёхугольника MOKP равна сумме площадей треугольников BPC и AOD.
Прислать комментарий     Решение


Задача 78172  (#4)

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

Как должна двигаться ладья по шахматной доске, чтобы побывать на каждом поле по одному разу и сделать наименьшее число поворотов?
Прислать комментарий     Решение


Задача 78177  (#5)

Тема:   [ Касательные прямые и касающиеся окружности (прочее) ]
Сложность: 5-
Классы: 9,10

Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .