ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц? В остроугольном треугольнике ABC высоты AH и CH пересекают стороны BC и AB в точках A1 и C1. Точки A2 и C2 симметричны относительно AC точкам A1 и C1. Докажите, что расстояние между центрами описанных окружностей треугольников C2HA1 и C1HA2 равно AC. Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми? Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:
Дан треугольник ABC. Построим треугольник, стороны которого касаются вневписанных окружностей этого треугольника. Зная углы исходного треугольника, найти углы построенного.
Даны два пересекающихся отрезка длины 1, AB и CD. Доказать, что по
крайней мере одна из сторон четырёхугольника ABCD не меньше
Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке