Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Сколько корней на отрезке  [0, 1]  имеет уравнение   8x(1 – 2x²)(8x4 – 8x² + 1) = 1?

Вниз   Решение


Какие выпуклые фигуры могут содержать прямую?

ВверхВниз   Решение


В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

ВверхВниз   Решение


Докажите, что при нечётном  n > 1  справедливо равенство  

ВверхВниз   Решение


По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

ВверхВниз   Решение


Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


Пусть xy + yz + xz = 1. Докажите равенство:

$\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$.


ВверхВниз   Решение


Рассмотрим число     Докажите, что оно

а) меньше 1/10;   б) меньше 1/12;   в) больше 1/15.

ВверхВниз   Решение


Докажите неравенство     при любых натуральных n и k.

ВверхВниз   Решение


Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

ВверхВниз   Решение


Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел?

ВверхВниз   Решение


Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

ВверхВниз   Решение


Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?

ВверхВниз   Решение


Дан $ \Delta$ABC. Центры вневписанных окружностей O1, O2 и O3 соединены прямыми. Доказать, что $ \Delta$O1O2O3 — остроугольный.

ВверхВниз   Решение


Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2?

ВверхВниз   Решение


Выведите из неравенства задачи 61401

  а) неравенство Коши-Буняковского:  

  б) неравенство между средним арифметическим и средним квадратичным:   ;

  в) неравенство между средним арифметическим и средним гармоническим:   .
  Значения переменных считаются положительными.

ВверхВниз   Решение


a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78211

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 9,10

Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.
Прислать комментарий     Решение


Задача 78214

Темы:   [ Обыкновенные дроби ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9,10

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Прислать комментарий     Решение

Задача 78218

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Прислать комментарий     Решение

Задача 78224

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.

Прислать комментарий     Решение

Задача 78206

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .