ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

Вниз   Решение


Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу.

ВверхВниз   Решение


Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K, N и D лежат на одной прямой.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение




Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что при любых натуральных  0 < k < m < n  числа    и    не взаимно просты.

ВверхВниз   Решение


На химической конференции присутствовало k учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: ``Кем является такой-то: химиком или алхимиком?'' (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за: а) 4k вопросов; б) 2k - 2 вопросов.

ВверхВниз   Решение


У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?

ВверхВниз   Решение


Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 78470

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 78469

Темы:   [ Вспомогательные равные треугольники ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 7,8

Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

Прислать комментарий     Решение

Задача 78475

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

Прислать комментарий     Решение

Задача 78489

Темы:   [ Раскладки и разбиения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8

Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

Прислать комментарий     Решение

Задача 78472

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9

a1, a2, ..., an  – такие числа, что  a1 + a2 + ... + an = 0.  Доказать, что в этом случае справедливо соотношение   S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj,  i ≠ j).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .