ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6. Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену. Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба? Решить в натуральных числах уравнение x2y–1 + (x + 1)2y–1 = (x + 2)2y–1. Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток? В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке? В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом. Решить в целых положительных числах уравнение На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества. Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число.
Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение xx + yy = zz + tt.
Имеется 200 карточек размером 1×2, на каждой из которых написаны числа +1 и -1. Можно ли так заполнить этими карточками лист клетчатой бумаги размером 4×100, чтобы произведения чисел в каждом столбце и каждой строке образовавшейся таблицы были положительны? (Карточка занимает целиком две соседние клетки.)
Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке