ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный. На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали. Постройте квадрат, три вершины которого лежат на трёх данных
параллельных прямых.
Существует ли правильный треугольник с вершинами в узлах целочисленной
решетки?
На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.
Постройте четырехугольник ABCD по четырем сторонам
и углу между AB и CD.
Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах? Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из 4n – 2 диагоналей равнялась 1. Можно ли это сделать при В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$, $BE \geqslant 2AM$. Докажите, что треугольник $ABC$ тупоугольный. На окружности с центром O даны точки
A1,..., An,
делящие ее на равные дуги, и точка X. Докажите, что
точки, симметричные X относительно прямых
OA1,..., OAn,
образуют правильный многоугольник.
Пусть O — центр описанной окружности треугольника ABC,
H — точка пересечения высот. Докажите, что
a2 + b2 + c2 = 9R2 - OH2.
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами. |
Страница: 1 [Всего задач: 5]
Белая ладья преследует чёрного слона на доске 3×1969 клеток (они ходят по очереди по обычным правилам). Как должна играть ладья, чтобы взять слона? Первый ход делают белые.
Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?
В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.
Имеется 1000 деревянных правильных 100-угольников, прибитых к полу. Всю эту систему мы обтягиваем верёвкой. Натянутая верёвка будет ограничивать некоторый многоугольник. Доказать, что у него более 99 вершин.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке