Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Вниз   Решение


Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


Через точку M, лежащую внутри параллелограмма ABCD, проведены прямые PR и QS, параллельные сторонам BC и AB (точки P, Q, R и S лежат на сторонах AB, BC, CD и DA соответственно). Докажите, что прямые BS, PD и MC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.

ВверхВниз   Решение


Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

ВверхВниз   Решение


Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

ВверхВниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.)

ВверхВниз   Решение


На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что  $AK = AC,  BK = LC$.  Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.

ВверхВниз   Решение


В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

ВверхВниз   Решение


Докажите, что если никакие стороны четырехугольника не параллельны, то середина отрезка, соединяющего точки пересечения противоположных сторон, лежит на прямой, соединяющей середины диагоналей (прямая Гаусса).

ВверхВниз   Решение


Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара.

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что  BD = BC,  а на катете BC – такая точка E, что  DE = BE.
Докажите, что  AD + CE = DE.

ВверхВниз   Решение


На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

ВверхВниз   Решение


Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?

ВверхВниз   Решение


Тангенсы двугранных углов при основании правильной треугольной пирамиды равны 3. Найдите длину отрезка, соединяющего середину стороны основания с серединой противоположного ребра, если сторона основания пирамиды равна .

ВверхВниз   Решение


На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

ВверхВниз   Решение


Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 79406

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметические действия. Числовые тождества ]
[ Процессы и операции ]
Сложность: 3+
Классы: 7,8,9

Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции: по любым числам x и y он вычисляет x + y, xy и $ {\frac{1}{x}}$ (при x ≠ 0). Петя утверждает, что он может возвести любое положительное число в квадрат с помощью своего микрокалькулятора, сделав не более 6 операций. А вы можете это сделать? Если да, то попробуйте перемножить любые два положительных числа, сделав не более 20 операций (промежуточные результаты можно записывать, неоднократно используя их в вычислениях).
Прислать комментарий     Решение


Задача 79416

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 9,10

Найти на плоскости точку, сумма расстояний от которой до четырёх заданных точек минимальна.
Прислать комментарий     Решение


Задача 79421

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3+
Классы: 11

а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0.
б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c.
Прислать комментарий     Решение


Задача 79409

Темы:   [ Системы точек ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
Прислать комментарий     Решение


Задача 79410

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Упростить выражение   .

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .