Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

а) Докажите, что высоты треугольника пересекаются в одной точке.
б) Пусть H – точка пересечения высот треугольника ABC, R – радиус описанной окружности. Докажите, что  AH² + BC² = 4R²  и  AH = BC |ctg α|.

Вниз   Решение


Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.

ВверхВниз   Решение


Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

ВверхВниз   Решение


Прожектор освещает угол величиной 90o. Докажите, что в любых четырех заданных точках можно разместить 4 прожектора так, что они осветят всю плоскость.

ВверхВниз   Решение


Пусть p(n) – количество разбиений числа n (определение разбиений смотри здесь). Докажите равенства:

p(0) + p(1)x + p(2)x '' + ...  =  (1 + x + x² + ...)...(1 + xk + x2k + ...)...  =  (1 – x)–1(1 – x²)–1(1 – x³)–1...

(По определению считается, что  p(0) = 1.)

ВверхВниз   Решение


а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

ВверхВниз   Решение


Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


На стороне AC треугольника ABC взята точка E. Через точку E проведены прямая DE параллельно стороне BC и прямая EF параллельно стороне AB (D и E — точки соответственно на этих сторонах). Докажите, что SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.

ВверхВниз   Решение


На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках.
Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

ВверхВниз   Решение


Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.

ВверхВниз   Решение


На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники  A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём  α + β + γ = 60°.  Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.

ВверхВниз   Решение


Найти хотя бы одно целочисленное решение уравнения  a²b² + a² + b² + 1 = 2005.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 86100  (#1)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Найти хотя бы одно целочисленное решение уравнения  a²b² + a² + b² + 1 = 2005.

Прислать комментарий     Решение

Задача 86101  (#2)

Темы:   [ Наглядная геометрия ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Прислать комментарий     Решение

Задача 86102  (#3)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

Прислать комментарий     Решение

Задача 86103  (#4)

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Прислать комментарий     Решение

Задача 86104  (#5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Круг, сектор, сегмент и проч. ]
[ Наглядная геометрия ]
Сложность: 4-
Классы: 8,9,10

Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .