Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта?

Вниз   Решение


Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается изнутри третьей окружности радиуса R в точках A и B соответственно. Найдите радиус R, если  AB = 11,  r = 5.

ВверхВниз   Решение


Решите в натуральных числах уравнение:
  а)  x² – y² = 31;
  б)  x² – y² = 303.

ВверхВниз   Решение


В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы.
Сколько слов в языке племени Бум-Бум?

ВверхВниз   Решение


Трое играют в настольный теннис, причем игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 10 партий, второй – 21. Сколько партий сыграл третий игрок?

ВверхВниз   Решение


Команды А, Б, В, Г и Д участвовали в эстафете. До соревнований пять болельщиков, высказали следующие прогнозы.
  1) команда Д займет 1-е место, команда В – 2-е;
  2) команда А займет 2-е место, Г – 4-е;
  3) В – 3-е место, Д – 5-е;
  4) В – 1-е место, Г – 4-е;
  5) А – 2-е место, В – 3-е.
В каждом прогнозе одна часть подтвердилась, а другая – нет. Какое место заняла каждая из команд?

ВверхВниз   Решение


Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Пастух пас стадо из 100 голов. За это ему заплатили 200 р. За каждого быка заплатили 20 р., за корову – 10 р., а за теленка – 1 р.
Сколько в стаде быков, сколько коров и сколько телят?

ВверхВниз   Решение


Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?

ВверхВниз   Решение


Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.

ВверхВниз   Решение


Решить систему уравнений:
   x³ – y³ = 26,
   x²y – xy² = 6.

ВверхВниз   Решение


Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.

ВверхВниз   Решение


Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Вверх   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 644]      



Задача 86487

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 7,8

Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Прислать комментарий     Решение

Задача 86489

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?

Прислать комментарий     Решение

Задача 86558

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 6,7,8,9

За весну Обломов похудел на 25%, затем за лето прибавил в весе 20%, за осень похудел на 10%, а за зиму прибавил 20%.
Похудел ли он или поправился за год?

Прислать комментарий     Решение

Задача 87958

Темы:   [ Числовые таблицы и их свойства ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 5,6,7

Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?

Прислать комментарий     Решение

Задача 88011

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 5,6,7,8

Дядька Черномор написал на листке бумаги число 20.  33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .