ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что  СЕ = CD.

Вниз   Решение


Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

ВверхВниз   Решение


Стоимость проездного билета на месяц составляет 800 руб. А стоимость билета на одну поездку 24 руб. Аня купила проездной и сделала за месяц 44 поездок. Сколько рублей она сэкономила?

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.

Вверх   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 6702]      



Задача 86899

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол 45o . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Задача 86900

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86901

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Задача 86903

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86904

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .