Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

Вниз   Решение


В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°.

ВверхВниз   Решение


Докажите, что  r/R $ \leq$ 2 sin($ \alpha$/2)(1 - sin($ \alpha$/2)).

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

ВверхВниз   Решение


Докажите, что проекции основания высоты треугольника на стороны, ее заключающие, и на две другие высоты лежат на одной прямой.

ВверхВниз   Решение


Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3.
Доказать, что существует не более одного целого x, при котором значение этого многочлена равно 5.

ВверхВниз   Решение


По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.

ВверхВниз   Решение


Докажите, что если a, b, c — длины сторон треугольника периметра 2, то  a2 + b2 + c2 < 2(1 - abc).

ВверхВниз   Решение


Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 87942  (#5.1)

Тема:   [ Обратный ход ]
Сложность: 2-
Классы: 5,6,7

В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?
Прислать комментарий     Решение


Задача 102959  (#5.2)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 5,6,7,8

Имеются двое песочных часов — на 7 минут и на 11 минут. Яйцо варится 15 минут. Как отмерить это время при помощи имеющихся часов?
Прислать комментарий     Решение


Задача 87958  (#5.3)

Темы:   [ Числовые таблицы и их свойства ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 5,6,7

Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?

Прислать комментарий     Решение

Задача 102961  (#5.4)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 5,6

В токарном цехе вытачиваются детали из стальных заготовок, из одной заготовки — деталь. Стружки, оставшиеся после обработки трех заготовок можно переплавить и получить ровно одну заготовку. Сколько всего деталей можно сделать из 9-ти заготовок? А из 14-ти? Сколько нужно взять заготовок, чтобы получить 40 деталей?
Прислать комментарий     Решение


Задача 102962  (#5.5)

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6

У семи Чебурашек есть по два воздушных шарика: красный и жёлтый.
Могут ли они так поменяться друг с другом шариками, чтобы у каждого было по два шарика одного цвета?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .