Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

Вниз   Решение


Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

ВверхВниз   Решение


На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник.

ВверхВниз   Решение


На сторонах AB, BC и CA треугольника ABC взяты точки P, Q и R соответственно. Докажите, что центры описанных окружностей треугольников APR, BPQ и CQR образуют треугольник, подобный треугольнику ABC.

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

ВверхВниз   Решение


В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.

ВверхВниз   Решение


В данный треугольник поместите центрально симметричный многоугольник наибольшей площади.

ВверхВниз   Решение


Автор: Фадин М.

Треугольник $ABC$ вписан в окружность $\omega_1$ с центром $O$. Окружность $\omega_2$ касается сторон $AB$, $AC$ и касается дуги $BC$ описанной окружности в точке $K$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что прямая $OI$ содержит симедиану треугольника $AIK$.

ВверхВниз   Решение


Автор: Ивлев Ф.

Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой.

ВверхВниз   Решение


а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 98015  (#М1189)

Темы:   [ Плоскость, разрезанная прямыми ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

Прислать комментарий     Решение

Задача 98006  (#М1190)

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8,9

а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .