Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Вниз   Решение


n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

ВверхВниз   Решение


Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Известен радиус описанной окружности R.
а) Найдите  AP2 + BP2 + CP2 + DP2.
б) Найдите сумму квадратов сторон четырехугольника ABCD.

ВверхВниз   Решение


Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 108251  (#М1421)

Темы:   [ Неравенство треугольника (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
  а) Докажите неравенство  P ≥ 2BD.
  б) В каких случаях это неравенство превращается в равенство?

Прислать комментарий     Решение

Задача 98188  (#М1423)

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Задача 98189  (#М1424)

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 6,7,8

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Прислать комментарий     Решение

Задача 108596  (#М1425)

Темы:   [ Вспомогательные равные треугольники ]
[ Параллелограмм Вариньона ]
[ Поворот помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

Прислать комментарий     Решение

Задача 98193  (#М1426)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Через S(n) обозначим сумму цифр числа n (в десятичной записи).
Существуют ли три таких различных натуральных числа m, n и p, что   m + S(m) = n+S(n) = p + S(p)?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .