Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются узлами, звеном" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?

Вниз   Решение


а) Пусть 0 < k < 1. На сторонах AB, BC и CA треугольника ABC отметим точки E, А и G таким образом, что

AE : EB = BF : FC = CG : GA = k.

Найдите отношение площади треугольника, образованного прямыми АF, BG и CE, к площади треугольника АВС (см. рис.).

б) Разрежьте треугольник шестью прямыми на такие части, из которых можно сложить семь равных треугольников.

ВверхВниз   Решение


Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?

ВверхВниз   Решение


Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.

ВверхВниз   Решение


На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

ВверхВниз   Решение


Автор: Охитин С.

На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.

ВверхВниз   Решение


Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если:   а)  r > l/3;   б)   r > l/4;   в)   r > l/5;   г)   r > l/7.

ВверхВниз   Решение


Автор: Попов В. А.

На отрезке [0; 1] задана функция f. Эта функция во всех точках неотрицательна, f(1) = 1, наконец, для любых двух неотрицательных чисел x1 и x2, сумма которых не превосходит 1, величина f (x1 + x2) не превосходит суммы величин f(x1) и f(x2).

а) Докажите для любого числа x отрезка [0; 1] неравенство f(x2) ≤ 2x.

б) Для любого ли числа х отрезка [0; 1] должно быть верно неравенство f(x2) ≤ 1,9x?

ВверхВниз   Решение


Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

ВверхВниз   Решение


Даны два набора из n вещественных чисел:  a1, a2, ..., an  и  b1, b2, ..., bn.  Докажите, что если выполняется хотя бы одно из двух условий:
  а) из  ai < aj  следует, что  bi ≤ bj;
  б) из  ai < a < aj,  где  a = 1/n (a1 + a2 + ... + an),  следует, что  bi ≤ bj,
то верно неравенство   n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).

ВверхВниз   Решение


n отрезков A1 B1 , A2 B2 , ... , An Bn (рис. 5) расположены на плоскости так, что каждый из них начинается на одной из двух данных прямых, оканчивается на другой прямой, и проходит через точку G (не лежащую на данных прямых) — центр тяжести единичных масс, помещенных в точках A1 , A2 , ... , An . Докажите, что

++...+=n.

ВверхВниз   Решение


В треугольнике ABC высоты, опущенные на стороны AB и BC, не меньше этих сторон соответственно. Найти углы треугольника.

ВверхВниз   Решение


Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого "шва", соeдиняющего противоположные стороны квадрата и идущего по краям плиток? Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный "шов".

ВверхВниз   Решение


а) На столе лежат 5 одинаковых бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Верно ли, что всегда каждый из этих треугольников можно накрыть четырьмя другими?
б) На столе лежат 5 одинаковых равносторонних бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Докажите, что каждый из этих треугольников можно накрыть четырьмя другими.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98508  (#1)

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
[ Обратный ход ]
Сложность: 3
Классы: 8,9

Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

Прислать комментарий     Решение

Задача 98509  (#2)

Темы:   [ Неравенства с медианами ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.

Прислать комментарий     Решение

Задача 98510  (#3)

Темы:   [ Средние величины ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 8,9

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

Прислать комментарий     Решение

Задача 98511  (#4)

Темы:   [ Покрытия ]
[ Параллельный перенос (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

а) На столе лежат 5 одинаковых бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Верно ли, что всегда каждый из этих треугольников можно накрыть четырьмя другими?
б) На столе лежат 5 одинаковых равносторонних бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Докажите, что каждый из этих треугольников можно накрыть четырьмя другими.

Прислать комментарий     Решение

Задача 98512  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .